

WP-05462-001_v01 | October 2010

White Paper

NVIDIA QUADRO DUAL COPY
ENGINES

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | ii

DOCUMENT CHANGE HISTORY

WP-05462-001_v01

Version Date Authors Description of Change
01 October 14, 2010 SV, SM Initial Release

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | iii

TABLE OF CONTENTS

Using Quadro Dual Copy Engines ... 1
Introduction .. 1
Current Streaming Approaches .. 3

Synchronous Downloads ... 3
CPU Asynchronous Downloads with PBOs ... 4

GPU Asynchronous transfers with Quadro Dual Copy Engines 6
Synchronization .. 7
Multi-Threaded Downloads ... 7
Readback with Quadro Dual Copy Engines .. 9

Results ... 10
References .. 12

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | iv

LIST OF FIGURES

Figure 1. Typical System Architecture Block Diagram 2
Figure 2. Synchronous Downloads With No Overlap ... 3
Figure 3. CPU Asynchronous Downloads with Ping Pong PBOs 4
Figure 4. Quadro Dual Copy Engine Block Diagram and Application Layout 6
Figure 5. GPU Asynchronous Transfers with Dual Copy Engines 7
Figure 6. Download Process Performance Comparison 11

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 1

NVIDIA QUADRO DUAL COPY ENGINES

INTRODUCTION

The evolution of high-performance and fully programmable graphics processing units
(GPUs) has led to tremendous advancements in graphics and parallel computing. With
the introduction of the new NVIDIA Quadro® professional graphics solutions, based on
the innovative NVIDIA® Fermi architecture [1], application developers greatly optimize
data throughput for maximized application performance.

In the past, data transfers would stall due to architectural limitations in synchronizing
the data with the GPU processing. For example, during texture uploads or frame buffer
readbacks, the GPU is blocked from processing and incurs a heavy context switch. This
synchronization requirement of traditional GPUs limits the overall processing
throughput capabilities and creates bottlenecks with high performance applications.

With the introduction of the Fermi architecture, the new Quadro® solutions feature
NVIDIA Dual Copy Engines that enable asynchronous data transfers with concurrent 3-
way overlap. The current set of data can be processed while the previous set can be
readback from the GPU, and the next set is uploaded. Figure 1 shows a typical system
architecture block diagram. It is seen that even with high performance PCI Express ×16
bandwidth, the Quadro GPU memory bandwidth is many orders faster than the bus and
the CPU RAM bandwidth. By overlapping transfers and compute, the PCI Express
memory latency can be hidden so that by the time the GPU is ready to process a piece of
data, it is already fetched into the high bandwidth area.

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 2

Figure 1. Typical System Architecture Block Diagram

Some examples for overlapped transfers with Quadro dual copy engines are:

 Video processing or time-varying geometry/volumes including post processing,
video upload to maintain a frame rate and readback to save to disk.

 Parallel numerical simulation that uses domain decomposition techniques such as
Finite Element/Volume. The Quadro GPU can be used as a co-processor that is able to
download, process and readback the various subdomains with CPU scheduling.

 Parallel rendering - When a scene is divided and rendered across multiple Quadro
GPUs with the color and depth readback for composition, parallelizing readback will
speed up the pipeline. Likewise for sort-first implementation where at every frame
the data has to be streamed to the GPU based on the viewpoint.

 Data bricking for large image, terrains and volumes. Bricks or LODs are paged in
and out as needed in another thread without disruption to the rendering thread.

 Cache for OS – OS can page in and out textures as needed eliminating shadow copies
in RAM.

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 3

CURRENT STREAMING APPROACHES

A typical download-process-readback pipeline can be broken down into the following:

 Copy – involves CPU cycles in data conversions if any to native GPU formats and
memcpy from the application memory space to the driver space.

 Download – the time for the actual data transfer on PCI Express from host to device.
 Process – GPU cycles for rendering and compute.
 Readback – time for the data transfer from device back to host.

To achieve maximum end-to-end throughput on the GPU, maximum overlap is required
between these various components in the pipeline.

Synchronous Downloads
The straightforward download method for textures is to call glTexSubImage which
involves and blocks the CPU while copying data from user space to the driver space and
subsequent data transfer on the bus to the GPU. Figure 2 illustrates the inefficiency of
this method as the GPU is idle while the CPU is busy with the memcpy.

Figure 2. Synchronous Downloads With No Overlap

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 4

Initialization
glGenTextures(1,&texID);
//TODO - read from file to pData
glBindTexture(GL_TEXTURE_2D, texID);
//TODO – Set Texture Params like wrap, filter using glTexParameteri
glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA8,width,height,0,GL_RGBA,GL_UNSIGNE
D_BYTE,pData[0]);

Draw
glBindTexture(GL_TEXTURE_2D, texID);
glTexSubImage2D(GL_TEXTURE_2D,0, 0,0,width,height,
 GL_RGBA, GL_UNSIGNED_BYTE, m_pData[m_curBrick]);
//TODO - Call drawing code here

CPU Asynchronous Downloads with PBOs
The OpenGL PBO [2] mechanism provides for transfers that are asynchronous on the
CPU. If an application can schedule enough work between initiating the transfer and
actually using the data, CPU asynchronous transfers are possible. In this case, the
glTexSubImage call operates with little CPU intervention. PBOs allow direct read/write
into GPU driver memory eliminating need for additional memcpys. The CPU after the
copy operation does not stall while the transfer takes place and can continue on to
process the next frame. However, downloads and uploads still involve GPU context
switch and cannot be done in parallel with the GPU processing or drawing. Multiple
PBOs can potentially speed up the transfers. A ping pong version is shown in Figure 3.

Figure 3. CPU Asynchronous Downloads with Ping Pong PBOs

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 5

Initialization
GLuint pboIds[2];
glGenBuffersARB(2, pboIds); //Allocate 2 PBO’s
glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, pboIds[0]);
glBufferDataARB(GL_PIXEL_UNPACK_BUFFER_ARB,width*height*sizeof(GLubyte*
nComponents),0,GL_STREAM_DRAW_ARB);
glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, pboIds[1]);
glBufferDataARB(GL_PIXEL_UNPACK_BUFFER_ARB,width*height*sizeof(GLubyte)
*nComponents,0,GL_STREAM_DRAW_ARB);
glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
//TODO – Same texture initialization from “texture streaming” section

Draw
static unsigned int curPBO = 0;
glBindTexture(GL_TEXTURE_2D,texId);
glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, pboIds[curPBO]); //bind pbo
//Copy pixels from pbo to texture object
glTexSubImage2D(GL_TEXTURE_2D,0,0,0,xdim,ydim,GL_RGBA,
GL_UNSIGNED_BYTE,0);

//bind next pbo for app->pbo transfer
glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, m_ pboIds[1-curPBO]);
//bind pbo
//to prevent sync issue in case GPU is still working with the data
glBufferDataARB(GL_PIXEL_UNPACK_BUFFER_ARB,
xdim*ydim*sizeof(GLubyte)*nComponents, 0, GL_STREAM_DRAW_ARB);
GLubyte* ptr = (GLubyte*)glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB,
GL_WRITE_ONLY_ARB);
assert(ptr);
memcpy(ptr,pData[m_curBrick],width*height);
glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB,0);
curPBO = 1-curPBO;
//TODO – Call drawing code here

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 6

GPU ASYNCHRONOUS TRANSFERS WITH QUADRO
DUAL COPY ENGINES
The copy engine featured in Quadro solutions provides real GPU-asynchronous texture
downloads. Texture data can be downloaded or uploaded in parallel with 3D rendering.
As shown in Figure 4, supported Quadro solutions1

 add an additional DMA engine
making it now possible to overlap download, processing, and readback. To take
advantage of this, one thread (channel) is used for rendering, one is used for download
and the third is used for upload, and all transfers are done via PBOs. When partitioned
this way, the render thread will run on the graphics engine and the transfer threads on
the copy engines in parallel and completely asynchronous. These are fully functional GL
contexts so that non-DMA commands can be issued in the transfer threads but will time
slice with the rendering thread. Copy engines can also handle format conversions and
swizzling for same data types without CPU intervention, in contrast to previous
hardware constraints where the input data formats had to be GPU native. Figure 5
shows the end-to-end frame time amortized over 3 frames for a time sequence. It is seen
how the current frame download (t1) is overlapped with render of previous frame (t0)
and CPU memcpy of next frame (t2).

Figure 4. Quadro Dual Copy Engine Block Diagram and Application
Layout

1 Quadro 4000, Quadro 5000, and Quadro 6000 only

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 7

Figure 5. GPU Asynchronous Transfers with Dual Copy Engines

Synchronization
OpenGL rendering commands are assumed to be asynchronous. When a glDraw* call is
issued, it is not guaranteed that the rendering is done by the time the call returns. When
sharing data between OpenGL contexts bound to multiple CPU threads, it is useful to
know that a specific point in the command stream was fully executed. This is managed
by sync objects as part of the ARB_sync [3] mechanism in OpenGL 3.2. Sync objects can
be shared between different OpenGL contexts and so a sync object created in a context
or thread can be waited by another context.

A type of sync object – fence is a token created and inserted in the command stream (in
a non signaled state) and when executed changes its state to signaled. Due to the in-
order nature of OpenGL, if the fence is signaled, then every command issued before the
fence was also completed. Cooperating threads can wait for the fence to become
signaled and resume operation similar to using mutexes in CPU threads. In a download-
process-readback scheme, the processing waits on the fence inserted after texture
download. Similarly, the readback waits on the fence inserted by the main thread after
render.

Multi-Threaded Downloads
Multiple textures can be used to ensure sufficient overlap such that downloads and
readbacks are kept busy while the GPU is rendering with a current texture. Since the
textures are shared between multiple contexts, synchronization primitives like events
and fences are created per texture. The following snippets illustrate the steps for
streaming 3D textures.

Shared Objects
GLsync fence[numBufers]; //multiple textures to ensure overlap
GLuint tex[numBufers];
HANDLE continue[numBufers], done[numBufers]; //events
HDC hDC;
HGLRC downloadRC, drawRC;

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 8

Main Draw
//Get 2 OpenGL contexts from same DC
downloadRC = wglCreateContext(hDC);
drawRC = wglCreateContext(hDC);
//Before any loading, share textures between contexts
wglShareLists(downloadRC, drawRC);
glGenTextures(numBuffers, tex);
for (i=0;i<numBuffers;i++) {
 continue[i] = CreateEvent(NULL, FALSE, FALSE, NULL);
 done[i] = CreateEvent(NULL, FALSE, FALSE, NULL);
}
//Create download thread from the main render thread
HANDLE downloadThread = CreateThread(NULL, NULL, downloadFunc,
downloadData, NULL, NULL);
int curRender = 0;
while (!done) {
 WaitForSingleObject(done[curRender]); //Wait for fence creation
 glWaitSync(fence[curRender], 0, 0);
 //At this point, the texture we want to use for render is ready
 Render();//Draw function calls glBindTexture(tex[curRender])

glDeleteSync(fence[curRender]);
SetEvent(continue[curRender]); //Download can start filling this tex

 curRender = (curRender+1)%numBuffers;
}
//Cleanup
WaitForAndDestroyThread(downloadThread);
glDeleteTextures(numBuffers, tex); //delete textures
for (i=0;i<numBuffers;i++) {
 CloseHandle(continue[i]); continue[i] = NULL; //Destroy the 2 events
 CloseHandle(done[i]); done[i] = NULL;
}
wglDeleteContext(downloadRC);
wglDeleteContext(drawRC);

Download Thread

In the download thread, a fence is inserted after the textures are updated using the
TexSubImage call and the main thread is notified to wait for this fence completion before
using that texture for the drawing. The mapping, CPU memcpy, and unmapping proceed
in parallel with the render thread.
DWORD WINAPI downloadFunc (LPVOID param) {

ThreadData *threadData = (ThreadData*) param;
wglMakeCurrent(hDC, downloadRC);
// ALLOCATE AND INIT PBO’S (CODE FROM PREVIOUS SECTIONS)
while (1) {

static unsigned int curPBO = 0, curDownload =0;
 WaitForSingleObject(continue[curDownload]);
 // Renderer has signaled that is has finished using this texture
 glBindTexture(GL_TEXTURE_3D,texId[curDownload]);
 glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, pbo[curPBO]);

//Copy pixels from pbo to texture object

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 9

glTexSubImage3D(GL_TEXTURE_3D,0,0,0,0,xdim,ydim,zdim,GL_LUMINANCE,
GL_UNSIGNED_BYTE,0);
 fence[curDownload] = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE,0)
 //Tell main render fence is now valid to use.
 SetEvent(done[curDownload]);

curDownload = (curDownload+1)%numBuffers;
//APP->PBO transfer
glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, pbo[1-curPBO]);
//prevent sync issue in case GPU is still working with the data
glBufferDataARB(GL_PIXEL_UNPACK_BUFFER_ARB,xdim*ydim*zdim*sizeof(G

Lubyte), 0, GL_STREAM_DRAW_ARB);
GLubyte* ptr = (GLubyte*)

glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, GL_WRITE_ONLY_ARB);
assert(ptr);
memcpy(ptr,m_pVolume[m_curTimeStep],m_w*m_h*m_d);
glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB,0);
curPBO = 1-curPBO;

 } // while
// DELETE PBO’S (CODE FROM PREVIOUS SECTIONS)
wglMakeCurrent(NULL, NULL);

return TRUE;
}

Readback with Quadro Dual Copy Engines
An additional readback thread is created and a fence is inserted in the main thread after
the rendering and asynchronous ReadPixels. The readback thread waits on this fence
before it starts mapping the buffers. Multiple PBOs can be used to alternate between
ReadPixels and copy into system memory in the readback thread.

Shared Objects
GLsync doneReadFence[numReadbackBuffers]; //multiple sync for overlap
//event to signal end of render+readback and to start the render
HANDLE doneRead[numReadbackBuffers], startRead[numReadbackBuffers];
HGLRC readbackRC;
GLuint readbackPBO[numReadbackBuffers]; //for readpixels

Main Render
int curRender = 0, curRead =0; //the buffer for async readpixels
while (!done) {
 WaitForSingleObject(done[curRender]); //Wait for fence creation
 glWaitSync(fence[curRender], 0, 0);
 Render();//Draw function, glBindTexture(tex) is called inside

glDeleteSync(fence);
 WaitForSingleObject(startRead[curRead]); //Wait for readback
 //Bind readbackPBO[curRead] and do async glReadPixels here
 doneReadFence[curRead]=glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE,0);
 SetEvent(doneRead[curRead]); // fence is ready for readback to wait
}

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 10

Readback Thread
DWORD WINAPI readbackFunc (LPVOID param) {

ThreadData *threadData = (ThreadData*) param;
wglMakeCurrent(hDC, readbackRC);
<< ALLOCATE AND INIT PBO’S (CODE FROM PREVIOUS SECTIONS) >>
static unsigned int curMap = 0;
while (1) {

 WaitForSingleObject(doneRead[curMap]); //Wait for render fence
 glWaitSync(doneReadFence[curMap],0, GL_TIMEOUT_IGNORED);

//At this point, main thread has finished doing readpixels
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, readbackPBO[curMap]);
GLubyte* ptr = (GLubyte*) glMapBufferARB(GL_PIXEL_PACK_BUFFER_ARB,

GL_READ_ONLY);
assert(ptr);
<< process Pixels eg memcpy here using ptr >>
glUnmapBufferARB(GL_PIXEL_PACK_BUFFER_ARB);
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB,0);
glDeleteSync(doneReadFence[curMap]);
SetEvent(startRead[curMap]); //main thread can start readback now
curMap = (curMap+1)%numReadbackBuffers;

 } // while
<< DELETE PBO’S (CODE FROM PREVIOUS SECTIONS) >>
wglMakeCurrent(NULL, NULL);
return TRUE;

}

Note: Having two separate threads running on a Quadro graphics card with the
consumer NVIDIA® Fermi architecture or running on older generations of graphics
cards the data transfers will be serialized resulting in a drop in performance.

RESULTS

The following results (Figure 6) show a download-processing-readback pipeline
streaming HD (8 MB per frame) and 4K (32 MB per frame) images with varying
processing times (10 ms, 20 ms, and 30 ms) comparing the four methods listed.

 Synchronous
 CPU asynchronous with PBO’s
 GPU asynchronous using the copy engine for download
 Static or cached case where no streaming is involved

It is seen that the performance measured by fps is almost the same between HD and 4K
video streaming for all the processing times despite the 4× data size that is downloaded
for the 4K images. This shows that download and processing is happening truly
asynchronously on the GPU using Quadro copy engines.

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 11

Figure 6. Download Process Performance Comparison

NVIDIA Quadro Dual Copy Engines

NVIDIA Quadro Dual Copy Engines WP-05462-001_v01 | 12

REFERENCES

[1] Fermi White paper -
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute
_Architecture_Whitepaper.pdf

[2] OpenGL PBO Specification
http://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt

[3] OpenGL ARB_Sync Specification
http://www.opengl.org/registry/specs/ARB/sync.txt

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf�
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf�
http://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt�
http://www.opengl.org/registry/specs/ARB/sync.txt�

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

ROVI Compliance Statement
NVIDIA Products that support Rovi Corporation’s Revision 7.1.L1 Anti-Copy Process (ACP) encoding technology
can only be sold or distributed to buyers with a valid and existing authorization from ROVI to purchase and
incorporate the device into buyer’s products.

This device is protected by U.S. patent numbers 6,516,132; 5,583,936; 6,836,549; 7,050,698; and 7,492,896
and other intellectual property rights. The use of ROVI Corporation's copy protection technology in the
device must be authorized by ROVI Corporation and is intended for home and other limited pay-per-view uses
only, unless otherwise authorized in writing by ROVI Corporation. Reverse engineering or disassembly is
prohibited.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA, the NVIDIA logo, Fermi, and Quadro are trademarks or registered trademarks of NVIDIA Corporation in
the U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright
© 2010 NVIDIA Corporation. All rights reserved.

	NVIDIA Quadro Dual Copy Engines
	Introduction
	Current Streaming Approaches
	Synchronous Downloads
	Initialization
	Draw

	CPU Asynchronous Downloads with PBOs
	Initialization
	Draw

	GPU Asynchronous transfers with Quadro Dual Copy Engines
	Synchronization
	Multi-Threaded Downloads
	Shared Objects
	Main Draw
	Download Thread

	Readback with Quadro Dual Copy Engines
	Shared Objects
	Main Render
	Readback Thread

	Results
	References

