
Massive Threading: Using GPUs to Increase the
Performance of Digital Forensics Tools

Lodovico Marziale, Golden G. Richard III, Vassil Roussev
Department of Computer Science

University of New Orleans
New Orleans, LA 70148

Email: {lmarziale, golden, vassil}@cs.uno.edu

Abstract—The current generation of Graphics Process-
ing Units (GPUs) contain a large number of general pur-
pose processors, in sharp contrast to previous generation
designs, where special-purpose hardware units (such as
texture and vertex shaders) were commonly used. This
fact, combined with the prevalence of multicore general-
purpose CPUs in modern workstations, suggests that
performance-critical software such as digital forensics tools
be “massively” threaded to take advantage of all available
computational resources.

Several trends in digital forensics make the availability
of more processing power very important. These trends
include a large increase in the average size (measured
in bytes) of forensic targets, an increase in the number
of digital forensics cases, and the development of “next-
generation” tools that require more computational re-
sources. This paper presents the results of a number of
experiments that evaluate the effectiveness of offloading
processing common to digital forensics tools to a GPU,
using “massive” numbers of threads to parallelize the
computation. These results are compared to speedups
obtainable by simple threading schemes appropriate for
multicore CPUS. Our results indicate that in many cases,
the use of GPUs can substantially increase the performance
of digital forensics tools.

I. INTRODUCTION

This paper investigates the role that Graphics
Processing Units (GPUs) can play in enhancing
the performance of digital forensics tools. Tradi-
tionally, GPUs have been both difficult to program
and targeted at very specific problems; to perform
non-graphical calculations required techniques that
recast data as textures or geometric primitives and
expressed the calculations in terms of available
graphics operations. A new class of GPUs, such as

This work was supported in part by the National Science Founda-
tion under grant # CNS-0627226.

the NVIDIA G80, have large numbers of general
purpose stream processors that excel at executing
massively threaded algorithms. Considering their
speed, GPUs are relatively cheap and modern ar-
chitectures allow adding several GPUs to a single
computer. The peak performance of the NVIDIA
line of GPUs, compared to the peak performance
of the Intel line of general-purpose CPUs, is shown
in Figure 1.

The goals of the experiments described in this pa-
per included measuring the effectiveness of offload-
ing processing common to digital forensics tools
to a GPU and, even more importantly, comparing
the resulting performance improvement with that
attainable by using simple threading techniques on
multicore CPUs. GPU programming, even on mod-
ern GPUs, is substantially more difficult than devel-
oping multithreaded applications suitable for execu-
tion on multicore CPUs such as the Intel Core2Duo
or AMD Opteron. The question is whether this
additional effort is worth it. Our results suggest that
the answer is yes.

Several trends in digital forensics make the avail-
ability of more processing power to support inves-
tigations an urgent need. The first is a vast increase
in the average size of forensic targets encountered
by investigators, which is directly attributable to the
availability of cheap storage devices. This results
in long turnaround times for critical cases and
ultimately causes large case backlogs. Another trend
is the increasing sophistication of digital forensics
tools, fueled by growing interest in digital forensics
as a research area and by a realization that feeds
back into the first trend. This realization is that
“manual” investigative methods, such as searching

Fig. 1. Estimated computational power, in gigaflops, of representa-
tive GPUS. Source: NVIDIA CUDA 0.8 SDK.

for child pornography by viewing thumbnails or
listening to every audio file on a drive, are com-
pletely impractical when terabytes of data must be
processed. Finally, the number of digital forensics
cases is rising for a number of reasons, including
better awareness of digital forensics techniques in
law enforcement and in the private sector.

Currently, most digital forensics tools run on
a single workstation. For very large cases, only
distributed computing (e.g., using a system like
DELV [10]) will offer enough processing power.
But the performance of tools running on individual
workstations can be increased substantially, through
a number of means. One is very careful attention to
the design of digital forensics tools, to minimize
disk accesses and data copying. Unlike commodity
applications like word processors, where the ever-
increasing computational power of modern CPUs
can hide sloppy programming or the excessive use
of expensive abstractions, digital forensics software
must execute as quickly (and accurately) as possi-
ble. In some cases, lives, economic prosperity, or
freedom may hang in the balance.

Design must also take into account the trend to
use lower clock speeds and multiple compute cores
in modern CPUs. Many current-generation tools
are single-threaded and without modification, will
be unable to take advantage of modern hardware,
including multicore processors. We argue in this
paper that new, multithreaded designs should also
consider the role that GPUs can play. GPUs excel
at single instruction, multiple data (SIMD) compu-
tations and examples of these kinds of calculations
definitely appear in the tools we develop in the

digital forensics research community.

II. RELATED WORK

A. Distributed Digital Forensics

In some cases, only tens, hundreds, or thousands
of general purpose processors, coupled with large
amounts of RAM, will suffice to solve a large case
within a reasonable timeframe. A distributed solu-
tion, such as a digital forensics framework running
on a compute cluster [10], may be necessary. Such
systems can address both I/O and processing con-
straints, using aggressive data caching techniques
and performing investigative operations in parallel.
The research described in this paper is complimen-
tary to that approach, since GPUs may be able to
speed up some cases sufficiently so they can run
on a single workstation, freeing cluster resources
to process larger cases. The techniques can also be
used to build faster clusters, by augmenting each
node in a cluster with one or more GPUs. This
approach was used with older GPUs in [13].

B. GPUs in Computer Security Software

A recent paper by Jacob and Brodley [5] de-
scribes PixelSnort, a port of the popular open–
source intrusion detection system (IDS), Snort.
Their system offloads IDS packet processing
(specifically, comparison with Snort rules) from
the host’s CPU to an NVIDIA 6800GT. Since the
6800GT does not present a programming model
with general purpose processors (unlike the G80
used in our research), GPU programming is com-
plicated. The 6800GT provides vertex and fragment
processors and programs can be written to control
either processor. Jacob and Brodley convert Snort
rules to textures and then use the fragment processor
to match network packets with rules. This involved
writing a fragment shader (in Cg [11]) that performs
string searches. When a packet matches a rule, the
fragment shader writes to the framebuffer, otherwise
the packet is simply discarded. They detect matches
using a graphics technique called occlusion-query,
which is supportd by OpenGL. PixelSnort offers
modest performance gains, probably limited by the
complicated software architecture dictated by the
6800GT’s lack of direct support for general com-
putations. The programming situation for GPUs is

improving, as we point out in subsequent sections
of this paper.

C. GPUs for “General Purpose” Computing

The tremendous increases in power in today’s
GPU’s has led to a need for ways to utilize them for
non-graphics applications. For example, the Nvidia
8800GTX is capable of a theoretical maximum
of 350 GFLOPS at a cost of $570 (April 2007).
Compare this to a 3.0 GHz Intel Core2 Duo, which
is capable of around 40 GFLOPS, at a cost of
about $266 (April 2007). This gives $.95/GFLOP
for the 8800GTX and $6.65/GFLOP for the Core
2 Duo. Memory bandwidth is also much higher on
the GPU: 86.4 GB/sec vs. 6GB/sec. Clearly there is
reason to want to exploit the tremendous power of
the GPU.

On the downside, the prevailing GPU architecture
and other GPU implementation details lead directly
to several difficulties when doing general purpose
programming. Floating point numbers are generally
non-IEEE compliant. Until recently, there was no
support for integer arithmetic. There were no ran-
dom memory writes. The massively parallel nature
of the GPU incurs added cost at each branching
operation. As threads diverge, the GPU has to begin
executing them serially instead of in parallel. To
combat these constraints, algorithms have to be re-
engineered to exploit parallelism. In addition, the
memory hierarchy can be complex, with several
types of memory of differing access granularity,
speed, and size requiring strict attention to memory
allocation details. And, also until recently, coding
had to be done through a graphics API which was
not particularly friendly to non-graphics program-
ming. Last, since moving data into and out of the
GPU is an added cost, algorithms which do not
exhibit a certain level of “arithmetic intensity” and,
therefore take advantage of the power of the GPU,
may not overcome the added costs.

Most coding done for GPUs is through one of
a handful of API’s. OpenGL [17] is an open 2D
and 3D API developed by Silicon Graphics in 1992.
It is a cross-platform, cross-language set of around
250 functions for building complex graphics from
a set of primitives. Competing with OpenGL is
Direct3D. This proprietary offering from Microsoft,
part of the DirectX [16] package, is the basis for the

graphics API on the Xbox and Xbox 360 console
systems. Close to the Metal [18] is ATI’s API
exposing the hardware and instruction set of it’s
newer stream processors. Sitting above the graphics
API’s are graphics and general purpose languages.
Developed by NVIDIA, C for Graphics, or Cg [11],
is a high–level graphics language based on C. It
shares syntax with C and adds some new features
that make it more suitable for GPU programming. In
the general purpose arena is BrookGPU [15] from
Stanford University’s Graphics Group. It consists of
a compiler and runtime for their general purpose
stream programming Language, called Brook.

Several significant GPGPU projects have been
implemented recently. At Stony Brook’s Center For
Visual Computing, a parallel flow simulation using
the Lattice-Boltzmann model (LBM) was imple-
mented on a cluster with 32 nodes with dual Xeon
2.4GHz processors [13]. Each node was equipped
with an nVIDIA GeForce FX 5800 Ultra, resulting
in a 4.6 times speedup over their CPU cluster im-
plementation. Stanford University’s Folding@Home
project has produced a (beta) GPU client for the ATI
X series of GPU’s. It provides 20 to 40 times faster
processing over general–purpose CPUs in many of
the calculations needed to simulate the folding of
proteins. They have also created a client for the
PS3 cell processor, which is about 40X faster than
a regular CPU.

The PeakStream Application Platform [14] from
PeakStream was used to perform Monte Carlo
simulations for pricing financial instruments. The
GPU implementation provides a 16X speedup vs.
dual 3.6GHz Xeon processors. At the University
of North Carolina at Chapel Hill, algorithms have
been developed for performing fast computation
of several common database operations on GPU’s
[3]. Database operations were broken down into
three basic types: conjunctive selections, aggrega-
tions, and semi-linear query. They achieved as high
as an order of magnitude performance gain for
certain query types. ATI has recently presented a
new virtual machine abstraction of a GPU, the
Data Parallel Virtual Machine [12]. It exposes the
hardware as a data-parallel processor array and a
memory controller fed by a simple command pro-
cessor in a platform independent way. This allows
a developer to fully exploit the hardware without

being locked into a graphics-centric framework.
Interestingly, Multiple virtual machines can operate
on one GPU or a single virtual machine can operate
across multiple GPU’s.

We discuss NVIDIA’s CUDA architecture, used
for our work, in a subsequent section.

D. File Carving

File carvers (e.g., [1], [2], [8]) read sets of rules,
traditionally, databases of header and footer defini-
tions, and search one or more target disk images
for streams of bytes which potentially represent
recoverable files (or file fragments).

File carving is a very important data recovery
technique because files can be retrieved in the
absence of filesystem metadata, e.g., after this meta-
data is destroyed by a format operation. While a
filesystem’s metadata is fragile, file data is much
more resilient.

Treating file carving as a “typical” digital foren-
sics technique makes sense because many common
issues arise. First, disk activity must be minimized,
since file carvers typically must make multiple
passes over a disk image. Second, they must per-
form very efficient binary string searches, because a
number of patterns must be matched against a large
amount of binary data. Finally, the sophistication
of file carving is increasing, with the development
of techniques for reducing false positives (through
verification or deeper analysis of type-specific file
structures) and detecting and processing fragmented
files. These new techniques will in turn require more
computational resources.

III. OVERVIEW: NVIDIA G80 AND CUDA

In this section we briefly describe the architecture
of the NVIDIA G80 GPU, the 8800GTX graphics
card used in our experiments, and the Compute
Unified Device Architecture (CUDA) SDK, which
is used to program the G80 GPU. This section is a
summary of the information available in the CUDA
SDK documentation at [6].

The G80 contains a set of multiprocessors, each
of which contains a set of stream processors which
operate on SIMD (Single Instruction Multiple Data)
programs. A high-level design of the G80 is de-
picted in Figure 2. Unlike earlier GPU designs,

which had fixed numbers of special-purpose pro-
cessors (e.g., vertex and fragment shaders), very
limited support for arbitrary memory accesses (scat-
ter/gather), and little or no support for integer
data types, the stream processors in the G80 are
general purpose. Despite this, care must still be
taken to write code which executes quickly on the
GPU. One relevant architectural constraint is that
stream processors within a multiprocessor share an
instruction unit; if control flow “diverges”, then
thread execution is serialized. Another constraint is
that access to device memory, the largest general
purpose pool of memory on the device, is slow.

A unit of work issued by the host computer to the
GPU is called a kernel and defines the computation
to be performed by a large number of threads,
organized in thread blocks. Each multiprocessor
executes one or more thread blocks, with each group
organized into warps. A warp is a fraction of a
thread group, comprised of threads that are currently
executing on a particular multiprocessor.

Figure 3 illustrates the organization of executing
threads on the G80 and their relationships with
available memory spaces, through which threads can
communicate with each other and with the host
computer. These memory areas, with restrictions
and associated costs, are:

• Private registers are local to a particular thread
and readable and writable only by that thread.

• Constant memory is initialized by the host and
readable by all threads in a kernel. Constant
memory is cached and a read costs one memory
read from device memory only on a cache miss,
otherwise it costs one read from the constant
cache. For all threads of a particular warp,
reading from the constant cache is as fast as
reading from a register as long as all threads
read the same address. The cost scales linearly
with the number of different addresses read by
all threads.

• Shared memory can be read and written by
threads executing within a particular thread
group. The shared memory space is divided
into distinct, equal-sized banks which can be
accessed simultaneously. This memory is on-
chip and can be accessed by threads within
a warp as quickly as accessing registers, as-
suming there are no bank conflicts. Requests

to different banks can be serviced in one clock
cycle. Requests to a single bank are serialized,
resulting in reduced memory bandwidth.

• Texture memory is a global, read-only memory
space shared by all threads. Texture memory
is cached and texture accesses cost one read
from device memory only on texture cache
misses. Texture memory is initialized by the
host. Hardware texture units can apply various
transformations at the point of texture memory
access.

• Finally, global memory is uncached device
memory, readable and writeable by all threads
in a kernel and by the host. Accesses to global
memory are expensive, requiring 200 or more
cycles of memory latency.

The 8800GTX card we used has a single G80
GPU, 768MB of device RAM, and 128 stream
processors, organized into 16 multiprocessors. Each
stream processor executes at 1.35 GHz. The raw
(theoretical) compute power of the 8800GTX is
approximately 350 GFLOPS. Some specific limits
of the 8800GTX relevant to our work are:

• A maximum of 512 threads per thread block is
allowed.

• 16KB of shared memory is available per mul-
tiprocessor, organized into 1K banks.

• A total of 64K of constant memory is available,
with a cache size of 8K per multiprocessor.

• Thread warp size on 8800GTX is 32 threads.

We now very briefly discuss the CUDA SDK,
used to conduct our GPU experiments. CUDA pro-
grams are written in C/C++, with CUDA-specific
extensions, and are compiled using the nvcc com-
piler, under either Microsoft Windows or Linux. A
CUDA program consists of a host component, exe-
cuted on the CPU, and a GPU component, executed
on the GPU. The host component issues bundles of
work (kernels) to be performed by threads executing
on the GPU.

There are few restrictions on the host component,
other than kernel invocations blocking the calling
host thread. CUDA provides functions for managing
the GPU, memory management functions which
allow allocating and initializing device memory,
texture handling, and support for OpenGL and Di-
rect3D.

Fig. 2. G80 architecture. On the 8800GTX, there are sixteen
multiprocessors, each containing eight stream processors, for a total
of 128 processors. The stream processors within a multiprocessor
share an instruction unit, so maximum parallelism is obtained when
only when the stream processors execute the same instruction stream
(potentially on different data). Source: NVIDIA CUDA 0.8 SDK.

The code executing on the GPU has a number
of constraints that are not imposed on host code.
Some of these limitations are “absolute” and some
simply reduce performance. In general, standard C
library functions are not available in code executing
on the GPU. CUDA does provide a limited set
of functions for handling mathematical operations,
vector processing, and texture and memory manage-
ment. The most important performance constraints
are maximizing use of shared memory, limiting
access to global memory as much as possible, and
keeping threads within a warp in “lockstep”, since
violations of the SIMD execution model result in
thread serialization.

IV. GPU-ENHANCED DIGITAL FORENSICS
TOOLS: CASE STUDY

A. Background

To test the ability of current generation GPUs to
speed digital forensics operations, we modified the

Fig. 3. Organization of a grid of threads in CUDA and the
relationship between threads and available memory spaces. Source:
NVIDIA CUDA 0.8 SDK.

file carver Scalpel [8] to support multi-threaded op-
eration. Different threading models were developed
for execution on multicore CPUs and on GPUs such
as the NVIDIA G80. The component of Scalpel
most amenable to parallelization is header/footer
searches, which involves a large number of binary
string search operations. Since searching for binary
strings is a building block of many digital forensics
techniques, this is a reasonable place to start.

As we discussed in the introduction to the paper,
comparing the effectiveness of using a GPU to
increase the performance of a digital forensics tool
vs. simply creating a multithreaded version of the
tool for execution on one or more multicore CPUs
is important. One reason is that the GPU may be
able to offer substantially more performance at a
much lower price than adding additional CPUs to a
workstation. But this performance comes at a price,
namely, increased programming effort. To address
this issue we conducted our experiments on both a
relatively expensive workstation, with two multicore
processors and a GPU, as well as a more modest
workstation, with a single dual-core processor and
the same GPU.

For the following experiments, we modified
Scalpel v1.60 to support multhreading on both mul-
ticore CPUs (using the POSIX Threads Pthreads
library) and on the G80 GPU (using CUDA).
Scalpel processes disk images in two passes, with
the first pass reading the input in 10MB chunks
and conducting header/footer searches. Between the
two passes, a schedule is constructed so the second
pass can perform all of the carving operations (or,
for in-place carving [9], construct only a set of file
fragment offsets and lengths).

We parallelized the header/footer processing in
the first phase as follows. For multicore machines,
Scalpel was modified to spawn a thread for each
file carving rule. These threads form a pool that
sleeps while Scalpel fetches a 10MB block of data,
then wakes to perform header/footer searches on
the block, before sleeping again. In our prototype,
we do not currently hide disk access times by
fetching additional blocks while the threads search,
but this will be implemented before the new version
is released (and will be available in time for the
conference). Overlapping disk I/O with computation
will speed both the multicore and GPU versions of
the code.

For our initial attempt at multithreading on the
GPU, we copied the carving rules for a particular
file type to the 8800GTX’s constant memory area.
Since constant memory is not cleared across kernel
invocations, this operation is performed only once.
Before each kernel invocation, a 10MB block of
data is copied to global memory on the device.
The host then invokes a kernel that creates 65,536
threads to process the block. Each GPU thread is re-
sponsible for searching approximately 160 bytes of
the 10MB block, read directly from global memory.
Results are then copied from the GPU to the host
as a vector that encodes the locations of discovered
headers and footers. A very simple string search
is executed by GPU threads in this version. Note
for the GPU-assisted carving, a single host thread
is used which blocks during the kernel invocation.
This is deliberate, so that the performance of the
GPU (rather than the host processor) can be more
accurately measured. Before releasing the code, we
intend to create a hybrid strategy which utilizes both
the main CPU’s cores and the GPU to maximize use
of available resources.

TABLE I
RESULTS FOR CARVING 20GB DISK IMAGE ON DUAL PROCESSOR,

DUAL CORE SUN ULTRA 40 (2.6GHZ AMD OPTERON 2218
PROCESSORS, 16GB RAM). 30 FILE TYPES, ∼3M FILES CARVED.
EACH RESULT IS THE AVERAGE OF MULTIPLE, SEQUENTIAL RUNS.

Scalpel 1.60 “vanilla” 2672 secs

Scalpel 1.60 “new q” 1784 secs

Scalpel 1.70MT-multicore 1054 secs

Scalpel 1.70MT-gpu-0.20 860 secs

TABLE II
RESULTS FOR CARVING 100GB DISK IMAGE ON DUAL

PROCESSOR, DUAL CORE SUN ULTRA 40 (2.6GHZ AMD
OPTERON 2218 PROCESSORS, 16GB RAM). 30 FILE TYPES,
∼15M FILES CARVED. EACH RESULT IS THE AVERAGE OF

MULTIPLE, SEQUENTIAL RUNS.

Scalpel 1.60 “vanilla” 13067 secs

Scalpel 1.60 “new q” 8725 secs

Scalpel 1.70MT-multicore 4958 secs

Scalpel 1.70MT-gpu-0.20 5185 secs

B. Experimental Results

To measure the performance of GPU-enhanced
file carving, we ran carving operations on 20GB and
100GB disk images using a set of 30 carving rules.
All carving operations used Scalpel’s “preview”
mode, which supports in-place carving [9]. The first
set of experiments was conducted on a Sun Ultra
40 with dual AMD Opteron 2218 processors, each
running at 2.6GHz. This machine had 16GB of
RAM and a 250GB, 7200rpm SATA hard drive.
The Opterion 2218 is a dual-core processor, so this
machine has a total of 4 CPU cores. The stock
graphics card in this box, an NVIDIA Quadro 5500,
was removed. An NVIDIA 8800GTX graphics card
was installed, which is based on the G80 GPU. The
8800GTX has 128 stream processors and 768MB of
device RAM. All of the experiments on this com-
puter were conducted under Linux, running a 32-bit
2.6-series SMP kernel and the ext3 filesystem.

Before discussing the performance results, a brief
note about the performance of Scalpel 1.60 is re-
quired. During the code review for the current re-
search, an inefficiency in how Scalpel 1.60 handles
the scheduling of its second pass over a disk image
was noted and corrected. “Vanilla” Scalpel 1.60
performance (without the fix) is noted in the table,
along with the improved version (labeled Scalpel

1.60 “new q”). The multicore and GPU-enhanced
versions of Scalpel are based on the improved
version of 1.60.

The results for the 20GB disk image are presented
in Table I. The released 1.60 version of Scalpel
required 2,672 seconds to carve approximately 3M
files of 30 different types. The improved (sequential)
version of 1.60 required only 1,784 seconds to
process the 20GB image. The multicore version
(running multiple header/footer processing threads
on the host CPUs) offers significantly better perfor-
mance, requiring only 1,054 seconds. Finally, when
header/footer processing is offloaded to the GPU,
execution time is reduced to 860 seconds.

Table II presents the results for the 100GB disk
image. The released 1.60 version of Scalpel required
13,067 seconds to carve approximately 15M files of
30 different types. By improving the carve schedul-
ing (as discussed previously) in 1.60, this time was
reduced to 8,725 seconds. The multicore version
(running multiple header/footer processing threads
on the host CPUs) completed processing of the disk
image in 4,958 seconds. Offloading processing to
the GPU and using only a single host thread results
in an execution time of 5,185 seconds.

For both disk images, multi-threading results in
substantially better performance than the sequential
version of the file carver; this is not unexpected. For
this set of experiments, our GPU code is handling
header/footer processing at least as well as four
2.6GHz host CPU cores. While these results are
promising, additional optimizations to the code run-
ning on the GPU can yield even better performance.

Next, we substantially increased the number of
threads executed on the GPU and eliminated iter-
ation over the 10MB buffer in the string search
technique. Instead of spawning a relatively small
number of threads, each searching a fixed portion
of the 10MB block of data read by Scalpel, we
spawned one thread per byte (e.g., approximately
10 million threads) for the input buffer. Each thread
simply “stands in place”, searching for all relevant
headers and footers starting at its location in a small
area of shared memory, which mirrors a portion
of the buffer in device memory. This threading
model is counterintuitive for execution on commod-
ity CPUs, because the overhead of managing so
many threads would typically be prohibitive. But

the G80 GPU excels at thread management and this
modification substantially increases performance.
Note that the string search technique being used is
still very simple; we’ll return to this issue later in
the section. The performance increase obtained by
using “massive” threading on the GPU is detailed
in the second set of experiments, described below.

The second set of experiments was conducted on
a Dell XPS 710 with a single Core2Duo processor
running at 2.6GHz. This machine had 4GB of
RAM and a 500GB, 7200rpm SATA hard drive.
The Core2Duo is a dual-core processor. The same
NVIDIA 8800GTX used in the Sun Ultra 40 was
used. We moved our experiments to the Dell XPS
because we wanted to measure the performance of
multicore and GPU-based threading on a box with
specifications (and cost) that more closely matched
those of a “typical” investigative machine. At the
time this paper is written (April 2007), the Sun
Ultra 40 with the Quadro 5500 replaced with the
8800GTX costs approximately $9,500, while the
Dell XPS costs approximately $3,500. All of the
experiments on this computer were conducted under
Linux, running a 32-bit 2.6-series SMP kernel and
the ext3 filesystem.

The results for the 20GB disk image are pre-
sented in Table III. The improved version of Scalpel
1.60 was used as a baseline and required 1,260
seconds to process the 20GB image. The multicore
version (running multiple header/footer processing
threads on the host CPUs) executed in 861 sec-
onds. Offloading processing to the GPU, using our
original search technique (0.2), reduces execution
time to 686 seconds. Finally, searching “in place”
by spawning 10 million threads on the GPU (0.3)
further reduces execution time to only 446 seconds.
We instrumented Scalpel to determine how much
time was spent in binary string searches. For the
20GB cases, approximately 85% of execution time
was used for searching for headers and footers. The
remainder was largely consumed by disk operations.

Table IV presents results for processing the
100GB disk image on the Core2Duo machine. The
improved version of Scalpel 1.60 requires 7,105 sec-
onds. Threading on the Core2Duo reduces the time
to 5,096 seconds. Offloading searches onto the GPU,
using the original search technique (0.2), requires
4,192 seconds. The massive threading approach on

TABLE III
RESULTS FOR CARVING 20GB DISK IMAGE ON SINGLE

PROCESSOR, DUAL CORE DELL XPS 710 (2.4GHZ CORE2DUO
PROCESSOR, 4GB RAM). 30 FILE TYPES, ∼3M FILES CARVED.

EACH RESULT IS THE AVERAGE OF MULTIPLE, SEQUENTIAL RUNS.

Scalpel 1.60 “new q” 1260 secs

Scalpel 1.70MT-multicore 861 secs

Scalpel 1.70MT-gpu-0.20 686 secs

Scalpel 1.70MT-gpu-0.30 446 secs

TABLE IV
RESULTS FOR CARVING 100GB DISK IMAGE ON SINGLE

PROCESSOR, DUAL CORE DELL XPS 710 (2.4GHZ CORE2DUO
PROCESSOR, 4GB RAM). 30 FILE TYPES, ∼15M FILES CARVED.

EACH RESULT IS THE AVERAGE OF MULTIPLE, SEQUENTIAL RUNS.

Scalpel 1.60 “new q” 7105 secs

Scalpel 1.70MT-multicore 5096 secs

Scalpel 1.70MT-gpu-0.20 4192 secs

Scalpel 1.70MT-gpu-0.30 3198 secs

the GPU (0.3) has the best running time, 3,198
seconds.

We also conducted a number of experiments that
used only a small number of carving rules. We
observed the worst performance on GPU-enhanced
carving when the number of carving rules was min-
imal and the size of the target was quite large. For
example, Table V presents results for a 500GB disk
image for which only two file types (GIF and JPEG)
were carved. 73,303 files were recovered, with the
sequential and multicore versions of Scalpel taking
almost exactly the same amount of time: 9,946 and
9,922 seconds, respectively. There is limited room
for speedup under this scenario, since the time spent
performing disk operations overwhelms the small
amount of time dedicated to header/footer searches.
In this experiment, GPU-enhanced Scalpel performs
poorly, requiring 12,168 seconds. The cause is
memory transfer overhead; because host memory
and device memory are distinct, we must copy each
chunk of the disk image to the GPU, process it,
and then copy results back to host RAM. For a
500GB image, this requires about 1TB of device
←→ GPU memory transfers. Since there is little
work to parallelize, the cost of memory transfers to
and from the GPU exceeds any possible speedup.

The last experiment is interesting for a number
of reasons. One observation is that software using

TABLE V
RESULTS FOR CARVING 500GB DISK IMAGE ON SINGLE

PROCESSOR, DUAL CORE DELL XPS 710 (2.4GHZ CORE2DUO
PROCESSOR, 4GB RAM). 2 FILE TYPES, ∼73,000 FILES CARVED.

Scalpel 1.60 “new q” 9946 secs

Scalpel 1.70MT-multicore 9922 secs

Scalpel 1.70MT-gpu-0.30 12168 secs

a GPU should incorporate measures of potential
parallelism and below certain thresholds, the GPU
should not be used. The second observation is
that to overcome host to GPU and GPU to host
transfer costs in the earlier experiments, the GPU
was actually exhibiting remarkable speedups. The
transfer rate between the G80 GPU and host, under
the beta distribution of CUDA, is limited to 2GB/sec
maximum. In practice, researchers are seeing much
lower transfer rates. Currently, CUDA uses DMA
to transfer data between the host and the GPU, but
these transfers are synchronous, with computation
on the GPU blocked during the entire transfer.
NVIDIA has indicated that this restriction may be
removed in a future release.

C. Discussion

Our experiments reveal that incorporating GPU
support is a viable method for substantially increas-
ing the performance of digital forensics software
that relies on binary string searches. We expect
that revelant computations that exhibit higher “arith-
metic intensity” will similarly exhibit even higher
speedups on GPUs.

There are several factors in our current work that
are limiting GPU performance. These are discussed
below. We are currently working on most of these
and expect some to be resolved by the time a
final paper must be submitted. Some others will be
addressed before DFRWS 2007, at which time the
results can be presented.

The first issue is that our current GPU work is
based on CUDA 0.8, which is a beta release. The
compiler does not generate fully-optimized code
(for instance, it does not perform loop unrolling
and does not effectively minimize register usage)
and contains a number of bugs which require us to
greatly simplify our implementation. The raw data
transfer rate between the host and GPU is also not

as fast as we’d expect. The full release of CUDA,
due out soon, should increase performance.

Another issue is that while the sequential version
of Scalpel v1.60 and the multicore, multithreaded
version of Scalpel are using an optimized, efficient
binary string search algorithm (a modified version of
the classic Boyer-Moore technique), our GPU code
is currently using a very basic, unoptimized string
search. To illustrate this point, consider the perfor-
mance of the multithreaded (for multicore CPUs)
version of Scalpel running on the Dell XPS box.
Under the 20GB experiment on the Dell XPS, the
multicore version of Scalpel takes 861 seconds. If
the Boyer-Moore string search algorithm is replaced
with the simple one implemented on the GPU,
the time increases to 3,544 seconds, almost 4X
slower. This doesn’t necessarily represent speedup
obtainable on the GPU, because the Boyer-Moore
algorithm is more complicated and requires more
resources. But it does illustrate substantial room
for improvement. We are currently working on im-
plementing an improved GPU binary string search
algorithm, but this is not complete as the paper is
being written.

To avoid confusing the reader, we note that in
every test, the Dell XPS significantly outperformed
the more expensive Sun Ultra 40. Disk speed bench-
marks illustrated virtually no difference, so this isn’t
the issue. However, we have seen other evidence
that the current generation Core2Duo processors
perform significantly better than their Opteron coun-
terparts. Thus, the sets of experiments on either
box should be considered independently, rather than
as pitting a quad-core machine against a dual-core
machine. We did not have timely access to another
machine with a PCI–E–16 slot and an appropriate
power supply for the 8800GTX, but will expand the
number of machines in our testbed in the future.

V. CONCLUSION

The size of the targets that digital forensics
investigators must process continues to grow and
the current generation of digital forensics tools are
already struggling to deal with even modest-sized
targets. In addition, cutting edge tools are offering
more sophisticated analysis, in an effort to reduce
manual investigative techniques. This means that
the computational resources of a single workstation

are severely strained. As a result, digital foren-
sics researchers must use every means available to
increase the performance of their tools. Some of
the possible means include paying critical attention
to designing the most efficient software possible,
developing software that can take advantage of
modern multicore CPUs (through multithreading),
using distributed processing, and as demonstrated in
this paper, considering the use of commodity GPUs
to speed appropriate computation.

In this paper, we illustrated that at least one
type of operation common to many types of digital
forensics software, namely, binary string searches,
can be sped up substantially by offloading work to a
GPU. While the 8800GTX used in our experiments
is still relatively expensive, it will very soon be a
commodity graphics card. Furthermore, future GPU
designs, also based on general purpose stream pro-
cessors, will offer even more computational power.
Our primary purpose in writing this paper is to make
it clear that it is worth the effort to develop GPU-
aware digital forensics software.

VI. FUTURE WORK

Several efforts related to the research presented in
this paper are underway. First, we are completing
work on a better string search algorithm for the
GPU; we believe this can increase the speedup
of binary string searches on the GPU by almost
an order of magnitude. Secondly, since worksta-
tions will increasingly have both (several) multicore
CPUs and (potentially, several) powerful GPUs, we
are developing adaptive multithreading schemes for
parallel execution of common digital forensics tasks,
such as binary string searches, piecewise-hashing,
processing of Bloom filters, and efficient disk I/O.
These schemes will allow threads to execute on both
the host CPU(s) and the GPU(s) in parallel. By
executing I/O-bound and CPU-bound threads on the
host CPU(s) and appropriate CPU-bound threads on
the GPU, it will be possible to hide disk overhead
to a large degree while further increasing the rate at
which CPU bound tasks execute.

ACKNOWLEDGMENTS

The authors are grateful to Fareed Quaddora, the
UNO CS IT Manager, for much emergency systems
administration help, which allowed us to concentrate

on hacking. To Mahdi Abdelguerfi for allowing us
to take apart (and then take over, for nearly two
weeks) his brand new four processor Sun Ultra 40.
We are also very grateful to Daryl Pfeif for helpful
comments on the paper.

REFERENCES

[1] 2006 Digital Forensics Research Workshop File Carving Chal-
lenge, http://www.dfrws.org/2006/challenge/submissions/index.
html.

[2] The Foremost File Carver, http://foremost.sourceforge.net.
[3] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, D. Manocha,

“Fast Computation of Database Operations using Graphics Pro-
cessors,” Proceedings of ACM SIGMOD 2004.

[4] N. K. Govindaraju, J. Gray, R. Kumar, D. Manocha, “GPUTera-
Sort: High Performance Graphics Coprocessor Sorting for Large
Database Management,” Proceedings of ACM SIGMOD, 2006.

[5] N. Jacob, C. Brodley, “Offloading IDS Computation to the GPU,”
Proceedings of the 22nd Annual Computer Security Applications
Conference (ACSAC2006), 2006.

[6] NVIDIA Compute Unified Device Architecture (CUDA), http:
//developer.nvidia.com/object/cuda.html.

[7] J. Owens, D. Luebke, N. K. Govindaraju, M. Harris, J. Kruger, A.
Lefohn, T. Purcell, “A Survey on General Purpose Computation
on Graphics Hardware,” Proceedings of Eurographics, 2005.

[8] G. G. Richard III, V. Roussev, ”Scalpel: A Frugal, High-
Performance File Carver,” Proceedings of the 2005 Digital
Forensics Research Workshop (DFRWS 2005).

[9] G. G. Richard III, V. Roussev, V. Marziale,”In-place File Carv-
ing,” Research Advances in Digital Forensics III, Springer, 2007.

[10] V. Roussev and G. G. Richard III, ”Breaking the Performance
Wall: The Case for Distributed Digital Forensics,” Proceedings of
the 2004 Digital Forensics Research Workshop (DFRWS 2004).

[11] Cg (C for Graphics), http://developer.nvidia.com/page/cg main.
html.

[12] M. Peercy, M. Segal, D. Gerstmann, ”A Performance-Oriented
Data Parallel Virtual Machine for GPUs,” Proceedings of ACM
SIGGRAPH 2006.

[13] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stover, ”GPU Cluster
for High Performance Computing,” Proceedings of the ACM /
IEEE Supercomputing Conference 2004.

[14] ”High Performance Modelling Of Derivative Prices Using the
PeakStream Platform” PeakStream Financial Services Technical
Note, September 2006.

[15] BrookGPU, http://graphics.stanford.edu/projects/brookgpu/.
[16] Microsoft DirectX, http://www.microsoft.com/windows/directx/

default.mspx.
[17] OpenGL, http://www.microsoft.com/windows/directx/default.

mspx.
[18] ATI Close to the Metal, http://ati.de/companyinfo/researcher/

documents/ATI CTM Guide.pdf.

